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The concept of a reaction coordinate along which a 
system evolves en route from reactants to products is 
central to our understanding of the elementary act of 
the chemical change. When there is a barrier along the 
reaction coordinate, it can act as a bottleneck to 
transition and thus determine the rate of the reaction. 
Hence the first aspects that one wants are the details 
of the barrier region: How high is the barrier, and how 
narrow is the passage leading to it? There can also be 
one or more hollows along the reaction coordinate, and 
these correspond to shorter or longer lived reaction 
intermediates, depending on the depth of these hollows. 
In solution, the liquid will hinder the approach motion 
of the reactants. The barrier crossing is then not 
necessarily the rate-determining step, and the observed 
net reaction rate will also reflect the rate of diffusion 
of the reactants. Just as the liquid can hinder the 
approach motion of the reactants, it can also impede 
the products as they separate. This is the traditional 
cage effect.’ Computer simulations can examine what 
happens inside the cage and what factors govern its 
manifestation. An exhaustive review of such simula- 
tions has recently been prepared by Whitnell and 
Wilson.2 Overall views3 have been given by H y n e ~ , ~  
Shroeder and T r ~ e , ~  and Wolynes and Fleming.6 

The accumulated understanding of gas-phase reac- 
tion dynamics’ and that of the structure and dynamics 
of pure liquids,8 supplemented with the available 
computer power, enables one to monitor simultaneously 
the motion of two reactants that are being continuously 
buffeted by a solvent. The output from these simula- 
tions is a complete description of the time evolution of 
all particles in the system. Our attitude is that the 
mechanical, so-called molecular dynamics approach is 
like a very detailed experiment that calls for an 
interpretation. The very complexity of such a detailed 
mechanical description makes it necessary to develop 
simple models to interpret the results. One possible 
reduced stochastic description is based on modeling 
the role of the solvent via the introduction of an 
additional, dissipative (i.e., friction-like) term to the 
characterization of the motion. It is generally agreed 
that the resulting, so-called Langevin equation, or 
generalized Langevin equation (GLE) for the case of a 
friction term with “memory” of the previous history of 
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the system, correctly describes averaged physical 
propertie~.~-’2 In this Account we discuss an equivalent 
approach, but one which is cast in purely mechanical 
terms, in order to model, analyze, and predict the results 
of trajectory computations of bimolecular reactions in 
solution. The mechanical description that we use can 
be recast in frictional terms, yet we believe that, just 
as in the gas-phase problems, a simple mechanical 
picture is useful. 

Another complementary description that avoids the 
complexity of the many-atom problem is based on the 
frequency domain. The frequency spectrum of a large 
isolated molecule embodies in it much knowledge about 
the intrinsic (harmonic and anharmonic) forces. The 
vibrational, rotational, and wagging mations will typi- 
cally have different frequencies and thus will span 
different regions in the IR spectrum. In a similar 
manner, the many-body problem of a small reactive 
system immersed in a liquid may be studied using 
spectroscopic tools if one is willing to picture the solvent 
and solute as a “large molecule”. In particular we will 
be interested in the reactive system frequency and the 
solvent-solute coupling frequency. The tools for 
computing the power spectrum from classical trajec- 
tories are available:13 By using the Fourier transform 
to go over from the time domain to the frequency 
domain, the uncertainty relation is inherently built in 
and the time-energy complementarity of quantum 
mechanics is satisfied. In our work we use the classical 
power spectrum to study and interpret the dynamics 
of bimolecular reactions in solution. 
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Liquid State Control of  Chemical Reactions 

We begin with the role of a weakly coupled solvent14 
in activating the thermal reactants. We explain and 
show why the intervention by such a solvent is typically 
confined to the foothills of the barrier to reaction. We 
also find it worthwhile to distinguish between the mere 
caging of the reactants and the “classical” cage where 
the coupling to the solvent is strong enough to induce 
recrossings of the barrier,l5116 which thereby results in 
thermodynamic control. The quantitative discussion 
emphasizes the realistic magnitudes of the forces along 
the reaction coordinate and of the interaction with the 
solvent. An important technical tool is the use of the 
adiabatic appr~ximation’~ and the separation of time 
scales which is thereby implied. We probe the latter 
by computing the relevant power spectra. 

We pay particular attention to the participation of 
the solvent in the motion along the reaction path. The 
distinction between kinetic and thermodynamic control 
is discussed with special reference to reactions with a 
high chemical barrier. Further insight is provided by 
a study of activationless reactions (such as the recom- 
bination of an ion pair) in which the solvent takes an 
active part and the destruction of “solvent-separated” 
ion pairs1* is a prerequisite for reaction. A critique 
examines the limitations of the discussion and the scope 
for further work. 

Activated Processes 

To discuss the role of the solvent in activating the 
reactants we begin by examining the energy profile along 
the reaction coordinate q. Figure 1 is an example for 
a typical symmetric A + BA atom exchange reaction 
and as such exhibits two (general) features. One is the 
relative short range of interaction: There is a range L,  
where L is typically of the order of 1 A, such that at q 
= *L one is already a t  the foothills of the barrier. Thus 
the gas-phase interaction region is well l o c a l i ~ e d . ~ ~ ~ ~ ~  
The second important feature is the curvature of the 
potential. We use the second derivative of the potential 
along q, K(q) ,  as a measure for the frequency of the 
motion. If the motion is bound, then its local harmonic 
frequency is wz(q)  = K(q)/p where p is the mass. 
However, even if the motion is unbound, ( - K ( q ) / ~ ) l / ~  
locally determines the time scale of the motion. (Of 
course, in this case the motion is an unstable one.) Hence 
the magnitude of the curvature of the potential (scaled 
by the appropriate mass factor) tells us the local time 
scale of the motion. At the top of the barrier the 
magnitude of the unbound force constant is similar to 
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Figure 1. Upper panel: The general features of an energy profile 
along a reaction coordinate for a symmetric atom exchange 
reaction in the gas phase. Note that the gas-phase interaction 
potential has a short range, so that at q = kL one is already at 
the distant foothills of the potential and L i= 1-2 A. Lower 
panel: The ratio of the (local) reaction coordinate frequency and 
the solvent-solute frequency w, p2(q)  = w 2 ( q ) / w 2 ,  vs the reaction 
coordinate q. (The mass in eq 1.1 and in the definition of p2(q) 
is that for the C1+ Clz - Cln + C1 atom exchange reaction.) At  
the barrier the motion is unbound, yet the magnitude of the 
curvature is a measure for the local time scale of the motion. It 
is the high value of the curvature at the barrier and the low value 
of w in rare gas solvents that results in the solvent inability to 
interfere with the rapid barrier-crossing process. 

that of a bound diatomic molecule, Figure 1. Thus the 
crossing of the barrier is a rapid event, with a typical 
duration of 10-50 fs. 

A clear-cut “cage effect” (i.e., recrossings of the 
barrier) is seen in the simulations only a t  very high 
densities.21 Even then the details of the gas-phase 
potential are important, and many trajectories fail to 
recross the barrier if the steric and kinematic require- 
ments, familiar from the gas phase, are not satisfied. 
As one increases the density (and thereby diminishes 
the mean and the variance of the intermolecular 
distances), a fairly abrupt onset of caging is evident at 
the same density at which self-caging of the solvent 
becomes important. During the very short barrier- 
crossing event one cannot really distinguish between a 
glass phase and a liquid phase. A meaningful distinction 
between a glassy and a liquid state is possible only on 
much longer time scales. Rare gas glasses can therefore 
provide a useful medium for the experimental study of 
the dynamical role of the solvent in atom exchange 
reactions. 

The simulations have further shown that the liquid 
is able to detain the reactants (and/or products) a t  the 
distant foothills of the barrier for long periods and that 
activation (or deactivation when looking a t  the de- 
scending products) is localized both in time and in 
position. An initial fluctuationzz that involves a few 
solvent atoms, adjacent to the reactants, provides the 
necessary energy to surmount the barrier (a few 
kilocalories/mole) via a few hard collisions that are 
localized in time (and in position). The activation 
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process takes place a few hundreds of femtoseconds 
prior to the barrier crossing event, and it involves the 
creation of a “hot spot” in the liquid. 

One should carefully note that we are talking about 
that subset of trajectories that do manage to scale the 
barrier. For a system initially in thermal equilibrium 
there is a much larger subset of nonreactive trajectories. 
To show that we can discuss only the subset of reactive 
trajectories, it is convenient to appeal to microscopic 
reversibility. In the present context this implies that 
any possible forward motion in time has an equally 
possible motion determined by propagating backward 
in time. Any trajectory that ascends to the barrier has 
as its counterpart a trajectory that descends from the 
barrier. This is a result that we will appeal to below. 
It also offers a rationalization of why it takes a few hard 
collisions to scale the barrier. Imagine a fast descent 
from a steep barrier. The descending species must a t  
the foothills run into one or a few solvent atoms. In the 
next section we will make this description a shade more 
quantitative, but the essential point should be recog- 
nized already here: On the time scale of the descent 
from a typical chemical barrier, a weakly coupled solvent 
does not respond fast enough. The same considerations 
of microscopic reversibility also identify the subgroup 
of those trajectories that start as thermal separated 
reactants and do cross the barrier as the entire set of 
trajectories that begins a t  the barrier and, when 
propagated backward in time, descends into the reac- 
tants region. 

It may be useful to recast our mechanical description 
using the concept of f r i~ t i0n . l~  For a friction which has 
no memory (what is known as the ordinary Langevin 
equation), the dissipation corresponds to many frequent 
but small random kicks, as one expects in a Brownian 
motion. The picture we have outlined is that of one or 
a few large kicks localized in time or, equivalently, in 
frequency. As discussed above, the reaction path 
frequency rapidly varies along the reaction coordinate 
so that the coupling to the solvent is localized in space. 
Using a generalized Langevin equation, where the 
friction is time dependent one can, in principle, mimic 
this localized coupling. 

A Model of Activated Barrier Crossing in Solu- 
tion. To understand the nature of the activation 
process, a reduced description of the many-body 
problem is useful. The minimal Hamiltonian needed 
to describe an atom exchange reaction in a liquid must 
account for the role of the solvent. We therefore 
introduce a two-dimensional model Hamiltonian that 
involves a motion along the reaction coordinate q which 
is linearly coupled to a harmonic solvent-solute coor- 
dinate r: 

Ben-Nun and Levine 

considers only the motion along the reaction coordinate 
and neglects the other degrees of freedom of the 
transition state of the reactants. The role of these 
coordinates in the liquid is still an open question. 

Before proceeding to describe the results, we define 
reduced parameters that can be derivedl9 from the 
equations of motion for the Hamiltonian (1.1). These 
reduced parameters govern the different possible modes 
of behavior and are measured in units of the solvent- 
solute frequency, w,  and its mass m. There are two: 
One is a reduced coupling constant, 

Y* (Y/W) = (C /k ) ’ (m/d  (1.2) 

which measures how promptly the solvent can respond 
to its coupling to the solute. The higher is w ,  the faster 
can the solvent adjust to the motion of the reactants 
along the reaction coordinate. Therefore the raw 
strength of the coupling, y, and the frequency, w,  scale 
one another. In the weak coupling limit (which is 
appropriate for rare gas solvents), y* < 1, and vice versa 
for strongly coupled solvents, such as protic ones capable 
of creating hydrogen bonds. The other frequency in 
our problem is that for the motion along the reaction 
coordinate. An essential point is that this frequency 
is very different a t  different locations (at or about the 
barrier). Hence we use a reduced local frequency along 
the reaction coordinate: 

k C  2 H =  - - f  + - q  + E ( q ) + - r - - ( q - q * ) )  (1.1) (TI (3 2( k 

k is the harmonic solvent-solute force constant, E ( q )  
is the potential along the reaction coordinate, and q* 
is the barrier’s position. The linear coupling term C is 
related to the friction coefficient y, which governs the 
overall rate of momentum dissipation in the Langevin 
equation. We use the simulations to determine the 
force constants via the relevant dominant frequencies 
in the power spectrum. The two masses m and p are 
important in determining the dynamics. This model 

p2(q)  w2(q)/w2 = ( W q ) / k ) ( m / d  (1.3) 

p2(q)  is the ratio between the reaction coordinate 
frequency and the solvent-solute frequency. As we shall 
argue, it is the high value of Ip2(q)l for q at  or about the 
barrier top (i.e., for -L < q < +L, where Ip2(q)1 >> 1) 
which accounts for the failure of rare gas solvents to 
effectively cage the reactants in the barrier region. Note, 
however, that eq 1.3 includes a mass factor, and 
therefore the disparity in force constants in the barrier 
region can be partially compensated by a light solvent 
and/or a heavy solute. 

Below we discuss the adiabatic separation. We will 
take the adiabatic limit to be the one where the solvent 
is moving fast and is able to follow the motion along the 
reaction coordinate. The opposite is true in the sudden 
limit, where we have a fast motion along the reaction 
coordinate and a sluggish one along the solvent-solute 
mode. In both limits the solute can be strongly or 
weakly coupled to the solvent.23 

Adiabatic Separation. The disparity in the fre- 
quencies of the solvent motion and the motion along 
the reaction coordinate suggests that we introduce an 
adiabatic separation of coordinates. This is the exact 
analog of the Born-Oppenheimer approximation, with 
the fast motion corresponding to the motion of the 
electrons. This fast motion is able to adjust a t  every 
point in time to the instantaneous positions of the 
slow(er) coordinate(s). There are two important points 
of difference. First, it  is only near the barrier top that 
the motion along the reaction coordinate is faster than 
the motion of the solvent. This is no longer true at  the 
foothills of the barrier, so that nonadiabatic transitions 
will be important, and below we discuss them explicitly. 
The second is an important family of reactions for which 
the opposite is true, namely, that in the region of the 

(23) van der Zwan, G.; Hynes, J. T. J. Chem. Phys. 1983, 78, 4174. 
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Figure 2. Upper panel: Contour plots of the two-dimensional 
model potential energy surface for a symmetric atom exchange 
reaction. The reaction coordinate is shown as a thick line. The 
equipotential contours are 1.5 kcal mol-‘ apart. Note the short 
range of the barrier region. The rotation angle 0 is defined as 
the local tilt of the reaction coordinate Q with respect to the q 
axis where q is the reaction coordinate in the gas phase. Therefore 
Q corresponds to a concerted motion of both the solute and the 
solvent. The larger is 8, the more is the solvent mode participating 
in the motion along the reaction path Q. Note that 0 is constant 
asymptotically and at the barrier. (The asymptotic value of 0 is 
not 0 because the reactantdproducts are solvated.) Rapid 
changes in 8 occur at the foothills on either side of the barrier 
to reaction. In passing through such a region the motion in the 
two adiabatic coordinates Q and R is no longer uncoupled. One 
can determine analytically that 0 varies most with q at the point 
where pz(q) + y * = 1. The bottom panel shows where this localized 
breakdown of the adiabatic separation takes place, for the weak 
(y* < 1) and strong (y* > 1) coupling regimes. 
barrier to reaction it is the solvent motion which is 
faster. One characteristic of this family is the strong 
solvation of the reactants (which is absent in weakly 
coupled solvents, such as the rare gases). 

The adiabatic procedure is based on a local harmonic 
approximation for estimating the time scale of the 
motion along the reaction coordinate. An adiabatic 
separation of variables is possible when one can neglect 
the local anharmonicity of the reaction coordinate 
potential. This enables us to diagonalize the coupling 
between the r and q motions via rotation of the 
coordinates by an angle 8; see Figure 2. The “old” 
diabatic coordinate set is replaced by a new, adiabatic 
set, and the Hamiltonian is written as a sum of 
uncoupled terms. One new coordinate is that of crossing 
the barrier in the presence of the solvent. It is identified 
by being an unstable motion at  the barrier top. Motion 
along this coordinate corresponds to a concerted motion 
of both the solute and the solvent. The other coordi- 
nate, orthogonal to the first one, represents the solvation 
mode. It too is a concerted motion of both solvent and 
solute and corresponds to the stable mode. The local 
frequency depends on q, and hence so does the rotation 
angle 8. As the system moves toward the barrier, 8 
changes, or in physical terms, the extent of solvent 
participation in the reaction path changes. If this 
change is too rapid, the adiabatic separations will break 
down. 

The efficiency of energy transfer is relateed to the 
adiabaticity parameter, [. The motion is adiabatic if 

-300-200-100 0 100 200 300 
Time (fs) 

Figure 3. The momentum and the nonadiabatic coupling d0/dt 
(on either side of the barrier) vs time. The value of the reduced 
friction, y* = 0.7, is realistic for reactions in fluid Ar at a density 
of 1.4 g mol-’ at 300 K. All trajectories are initiated at  t = 0 from 
the top of the barrier with a thermal distribution in all other 
degrees of freedom. The motion gains momentum, due to the 
descent from the barrier, up to the crossing point (where d8/dt 
is extremal). The nonadiabatic transition converts most of the 
barrier energy to the r motion. 
(d8/dt) is small compared to the frequency w of the r 
motion; i.e., when [ > 1, [ = (o/(dO/dt)). In the 
nonadiabatic limit the angle is changing rapidly, [ < 1, 
and the impulsive deactivation (or activation) process 
is efficient. 

The minimum energy path for a model reaction is 
shown in the upper panel of Figure 2. During most of 
the motion the adiabatic rotation angle is constant, 
and only to the right and to the left of the ridge is it 
changing rapidly. It is a t  these “dangerous” regions, 
where the surface is curving, that the solvent-solute 
motion will couple to the reaction coordinate via a 
resonant local frequency matching that is shown in the 
lower panel of Figure 2. Other than that, the motion 
is in the weak coupling limit, and the separation of 
variables is de facto exact. The molecular dynamics 
(MD) simulations discerned this local frequency match- 
ing via a large and fairly impulsive energy transfer from 
the solvent to the solute as the latter is ascending the 
barrier. Note that using time reversibility arguments 
one can equally well view this as an energy transfer 
from the solute to the solvent as the former is rapidly 
descending from the barrier and is abruptly brought to 
a halt by the surrounding solvent. The same phenom- 
enon was observed in the model Hamiltonian and is 
shown for an ensemble of model trajectories in Figure 
3. The motion down (or to) the barrier is essentially 
unperturbed, and the products (or reactants) gain (or 
lose) all the available energy. Only when the foothills 
of the barrier are reached a vibrational nonadiabatic 
impulsive energy transition deactivates (activates) the 
products (reactants). For physical values of the friction 
term these nonadiabatic transitions are confined to the 
foothills of the barrier. Note that even though the 
results are for an ensemble of 500 trajectories, they all 
undergo activation (deactivation) a t  a similar time 
following the departure of the barrier a t  t = 0. Until 
this localized transition, the solvent is practically frozen 
during the rapid barrier descent. 
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Typical atom exchange reactions have a barrier with 
a rather short range, and the curvature of the potential 
is therefore quite high. It requires a very special solvent, 
with special properties, to be able to rapidly respond 
to this fast motion. Quantitatively, the local ratio of 
the frequencies along the reaction coordinate and the 
solvent-solute motion is a measure for that. In the fast 
solvent response regime, Ip2(q)l I 1, but this only 
happens at the foothills of the potential. In the barrier 
region Ip2(q)1 is high, and the solvent is frozen and unable 
to follow the solute motion.23 This was observed even 
for model S N ~  reactions in water.24 

Solvation. The adiabatic separation of variables 
determines, quantitatively, the extent of which the 
solvent contributes to the motion along the actual 
reaction path. In the region of kinetic control there is 
a limited solvent contribution to the motion across the 
barrier. This is typically the case in nonpolar solvents 
and/or in reactions with above thermal barrier heights. 
In the opposite extreme, the solvent responds much 
faster than the solute. The solvent control is then 
thermodynamic in that the solvent is in equilibrium 
with every configuration of the solute, and it induces 
recrossings of the barrier. We reiterate that simulations 
and our model considerations suggest that for many 
realistic cases one is in the region of kinetic control. 
Such will not necessarily be the case for reactions of 
ions in highly polar  solvent^.^^,^^ 

Caging. When collisions of reactants with the solvent 
first solvation shell reverse the sign of their momentum, 
the particles remount the potential barrier, and they 
may even pass again through the crossing point. In 
agreement with the MD results, caging takes place only 
at such high densities that the friction (or, in our 
mechanical terms, coupling) is much higher (Figure 4). 
Under such circumstances the system cannot move 
unimpeded between two solvent molecules. When this 
is the case, the trajectory can recross the transition 
state, and every recrossing is accompanied by a 
nonadiabatic impulsive energy transfer at either side 
of the barrier. In these transitions energy is transferred 
out of or into the motion along the adiabatic reaction 
path. When the value of the friction is high, Le., y* > 
1, these transitions can take place closer to the barrier 
region, where the curvature is still negative, i.e., p 2 ( q )  
< 0. Not every reflected trajectory must successfully 
recross the barrier. The reactant motion along the 
barrier is fast, and the solvent may not reorganize to 
facilitate the recrossing of the barrier. When the solvent 
does not have the time to adjust and reoptimize the 
transition-state configuration, the trajectories which 
are caged a t  the foothills of the barrier and are 
reactivated are then reflected from the top of the barrier. 
In the adiabatic limit the solvent-solute motion is able 
to follow the motion along the reaction coordinate, i.e., 
the rand q motions are synchronized. An unfavorable 
configuration of the transition state is adiabatic effect, 
and it reflects a nonequilibrium configuration of the 
transition state. 

Separation of Time Scales. The separation of time 
scales is due to a large difference in the magnitude of 
the reduced parameters for the different locations along 

(24) Bergsma, J. P.; Gertner, B. J.; Wilson, K. R.; Hynes, J. T. J. Chem. 
Phys. 1987, 86, 1356. Gertner, B. J.; Whitnell, R. M.; Wilson, K. R.; 
Hynes, J. T. J. Am. Chem. SOC. 1991, 113,74. 
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Figure 4. Upper panel: A model trajectory superposed on the 
potential energy surface at a high value of the reduced friction. 
The repeated crossings of the barrier are due to a strong 
nonadiabatic q - r energy exchange (not shown) any time the q 
motion approaches the barrier. At lower values of y* (lower 
panel), the solvent fails to track the motion along the reaction 
coordinate and the recrossing attempts fail. Note the larger value 
of the rotation angle 0 for stronger solvation. 

the reaction coordinate. The different time domains 
can be discerned in both the molecular dynamics 
simulations and the reduced model and are conveniently 
explored in the frequency domain. Here we consider 
but one example, that of the “cage” motion. 

Collisions with the liquid atoms can detain the 
products (and/or reactants) a t  the distant foothills of 
the activation barrier. These repeated collisions with 
the rare gas atoms (lower panel of Figure 5) generate 
a “collision-induced” spectrum in the far IR region.25 
We refer to these collisions as a “caged” motion as they 
confine the reactants to the region of chemical forces. 
In other words, we make a distinction between the 
classical “cage effect”, in which the reactants (or 
products) are made to retrace their descent and rescale 
the barrier, and the more general notion of a caged 
motion. The upper panel of Figure 5 shows this distinct 
frequency of the solvent-solute motion. 

Activationless Processes 

As in the gas phase, two classes of reactions, activated 
and activationless, serve as opposite models for simple 
bimolecular reactions. The first category will typically 
involve a reaction between neutral atoms or molecules 
whereas the second category includes radical recom- 
bination, ion-molecule reactions, and exchange reac- 
tions between polar Typical of such 
reactions is a long-range attraction exemplified in ion- 
molecule reactions by a well due to the ion-molecule 
polarization forces. Closer in, there may also be a barrier 

(25) Ben-Nun, M.; Levine, R. D. J. Phys. Chem. 1993, 97, 2334. 
(26) Straub,J.E.;Berne,B. J. J. Chem.Phys. 1988,89,4833. Keirstead, 

(27) Ben-Amotz,D.; Harris, C. B. J. Chem.Phys. 1987,86,5433. Bagchi, 
W. P.; Wilson, K. R.; Hynes, J. T. Ibid.  1991, 95, 5256. 

B.; Fleming, G. R. J. Phys. Chem. 1990,94,9. 
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Figure 5. Upper panel: Amolecular dynamics reactive trajectory 
for the 0 + Hz - OH + H reaction in fluid Ar at a density of 
1.4 g mol-1 and 300 K. The two bond distances are plotted vs 
time. We start with a bound Ht molecule, the barrier is crossed 
(rapidly) once, and an OH product molecule is formed. The 
reactants (products) are detained for a long period within the 
first solvation shell, at the distant foothills of the chemical 
activation barrier, due to frequent collisions with the liquid. Lower 
panel: An averaged power spectrum of the solvent atom-solute 
atom motion vs frequency as determined from the full molecular 
dynamics. The frequent collisions with the liquid generate a 
collision-induced spectrum in the far-IR region. 
before the reaction can proceed to completion. Our 
study is concerned only with the first stage, namely, 
the capture into the long-range well, as it occurs in 
solution.28 We do not address the exit out of this well 
en route to products. 

In the absence of an intrinsic barrier torecombination, 
the only barrier to capture, in the gas phase, is due to 
the rotational motion of the approaching reactants. (The 
recombination of two methyl radicals is but one example 
of a reaction with a rotational barrier.) The position 
of this rotational barrier is at  a large separation (when 
measured in units of the interaction length scale). There 
are two, unrelated, different reasons why the activa- 
tionless process is so different from the previous 
problem: (1) the reactants’ long-range interaction is 
physical and is therefore weaker compared to a chemical 
interaction, and (2) the interaction with the solvent is 
different. We have an ion or a polar reactant which at  
room temperature is typically bound to one (or more) 
liquid atoms, and the two are vibrating around their 
equilibrium distance. In and about the rotational 
barrier region the solvent is moving faster than the 
slowly diffusing reactants (in our notation this is noted 
by p2(q)  < 1). Only to the left of the rotational barrier, 
i.e., near the equilibrium distance, do the reactants feel 
a strong chemical attraction. This disparity in forces 
governs the different major aspects of the recombination 
dynamics. 

Molecular dynamics trajectories of a model ion- 
structureless molecule recombination in an atomic 

(28) Ben-Nun, M.; Levine, R. D. Chem. Phys. Lett. 1993, 214, 175. 
Ben-Nun, M.; Levine, R. D. J. Chem. Phys. 1993,100, 3594. 
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Figure 6. A typical molecular dynamics trajectory for the 
activationless recombination of an ion and a structureless 
molecule in liquid Ar. Lower panel: The relative ion (modeled 
as C1-)-molecule (modeled as a CH&l ”atom”) distance vs time 
in picoseconds. Note the capture (due to efficient stabilization 
of the ion pair by the solvent) at longer periods. Upper panel: 
The angular momentum j (in units of h )  of the ion-”molecule” 
relative separation as a function of time. In the gas phase, the 
simple capture model assumes that j is constant during the 
crossing of the centrifugal barrier. Here j is changing rapidly 
due to the buffeting of the reactants by the solvent. 

solvent show this strong ion-solvent relative interaction. 
In contrast to the gas-phase problem where the ion- 
molecule rotational quantum number is constant, here 
it is changing rapidly and with a frequency that is similar 
to the ion-solvent vibrational frequency, Figure 6. This 
correlation may be checked by comparing the frequency 
of the Fourier transform of the ion-solvent distance 
(Figure 6, lower panel) to that of the ion-molecule 
rotational quantum number (Figure 6, upper panel). 

The simulations have further pointed to the possible 
formation of a “solvent-separated” ion pair. At a large 
ion-molecule relative separation a solvent “atom” can 
fit in between the two reactants.18 The formation of an 
ion-molecule pair is then delayed, and it requires the 
reorganization of the solvent. As the ion-solvent 
separation decreases, two interactions are changing, and 
they both “push” the solvent to the other side of the 
ion: The ion-molecule attract ion is increasing, and the 
molecule-solvent atom repuls ion is increasing. Thus 
at  a large ion-molecule distance the energetically stable 
configuration is ion-solvent-molecule, and as the ion- 
molecule separation continues to decrease the stable 
configuration is solvent-ion-molecule. Once it is 
formed the ion-molecule pair can be stabilized by 
collisions with the solvent. This sequence of events is 
shown in the lower panel of Figure 7. In the gas phase 
an attempted recombination process of two structure- 
less reactants ends in their final ultimate separation, 
due to conservation of energy. One needs a chaperone 
or a third atom for stabilization of the adduct. The 
presence of the liquid provides this channel for energy 
dissipation, if energy transfer to the ion-solvent mode 
is efficient. Using an adiabatic separation of variables 
we identify the point in time that gives the major 
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that correspond to unstable  motion^.^^^^^ The second 
difference is the partial absence of long-range order. In 
this sense the liquid is a t  short times more similar to 
a glass. Furthermore, molecular liquids will have 
frequency bands corresponding to their internal 
motions. We consider that the spread of frequencies 
in the solvent, and the solvent internal modes, can 
further enhance the vibrational nonadiabatic deactiva- 
tion (and/or activation) processes. 

The use of one effective mode to describe the solvent 
interaction with the reaction coordinate is motivated 
by the evident separation of time scales. If we start 
with a Hamiltonian similar to eq 1.1 but with a large 
number of solvent harmonic oscillators (each with its 
own frequency), we can transform the problem to that 
of one effective solvent-solute mode that is coupled to 
the reaction coordinate. This mode is then coupled to 
a second solvent mode etc. Thus a hierarchy of 
successive interactions is generated. The solvent modes 
may be viewed as the different solvent shells around 
the solute, and the dissipation of energy is then 
perceived as a sequential event. Momentum is first 
dissipated to the first solvation shell, which will next 
dissipate it into the second shell and so on. For 
activated reactions the motion along the reaction 
coordinate is fast, and the secondary (and higher) 
interactions with the solvent are less important as they 
take place on a much longer time scale. In the 
activationless problem the higher interactions may be 
more important as the solvent and solute motions have 
a similar time scale. 

In the full dynamics, the solute is coupled to all 
possible modes of the solvent. If we restrict our 
consideration to the solute motion along the reaction 
coordinate, the effective solvent-solute force constant 
k, eq 1.1, is given by 

k = ~ X i 2 k i / ~ X ~  (1.4) 

This is in the form of a weighted average, with 
summation over all modes of the solvent. Xi is the 
coupling strength of the ith mode of the solvent to the 
solute, and ki is the force constant of the ith mode of 
the solvent. Equation 1.4 exhibits explicitly the role 
of the magnitude of the solvent frequencies and of the 
spread in these magnitudes on the value of k. The 
weighted averaging over the ki's shows that only such 
modes that simultaneously have higher frequencies and 
strong coupling to the solute contribute in an effective 
manner to k. In the same notation, C, the strength of 
the solvent-solute coupling defined in eq 1.2, is given 
by C2 = CiXi2. Unlike k (or the mass m), the value of 
C2 increases with the number of solvent modes with 
which the solute is effectively coupled. 

In principle, the unstable modes of the rare gas solvent 
may provide the necessary mechanism for an efficient 
energy exchange between the solvent and the reaction 
coordinate when the latter is still in the barrier region. 
However, simulations of atom exchange reactions in 
rare gas solvents did not show this effect. The 
magnitude of the curvature of the chemical barrier was 
shown to be similar to that of a diatomic force constant. 
The unstable modes of a rare gas have longer time 

1 i 

(29) Stillinger, F. H.; Weber, T. A. Science 1984, 225, 983. 
(30) Seeley, G.; Keyes, T. J. Chem. Phys. 1989, 91, 5581. 
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Figure 7. A trajectory for the activationless recombination 
reaction for the model. Lower panel: The ion-molecule separa- 
tion, q,  and the ion-solvent atom separation r'. a is the angle 
between the ion-molecule and the ion-solvent distances. At a 
large ion-molecule separation the stable configuration is molecule 
solvent-ion (cos a = 1); as the relative separation decreases, the 
solvent rotates to the other side of the ion (cos a = -1) and an 
ion pair is formed. The efficient energy exchange (not shown) 
between the reaction coordinate and the solvation coordinate 
results in the formation of a stable adduct. Upper panel: The 
angular momentum j of the ion-molecule separation q (in units 
of h )  (dashed line) and the angular momentum in the adiabatic 
limit (solid line) vs time. During the barrier crossing, the 
separation of variables is de facto exact and the adiabatic angular 
momentum is constant whereas, in agreement with the full 
simulation (Figure 6), j is constantly changing. The constant 
value of the adiabatic angular momentum enables us to extend 
the gas-phase capture model to solution. 

contribution to this energy transfer. The efficient 
energy transfer between the ion-molecule relative 
coordinate and the solvent-solute mode due to these 
vibrationally nonadiabatic transitions is confined to 
the ion-pair polarization well, and the approach motion 
itself is in the adiabatic limit. Thus the adiabatic 
separation enables us to use the gas-phase capture 
model, suitably modified to incorporate the dynamical 
role of the solvent motion, in solution. A motion along 
one uncoupled adiabatic coordinate describes the 
capture process. During the approach motion the 
angular momentum for this coordinate is constant 
(upper panel of Figure 7), and it thereby provides a 
quantitative criterion for capture. Qualitatively, what 
our discussion emphasizes is that a concerted motion 
of both the solvent and the solute modes takes place 
during the capture process. This is unlike the situation 
in weakly coupled solvents. 

Critique 

In the present Account only one stable frequency 
was assigned to the solvent, yet in a real solvent there 
is obviously a spread of frequencies. During the short 
time dynamics, the frequency spectrum of the liquid is 
not unlike that of a solid. There are, however, two 
important differences. Unlike the solid, the atoms (or 
molecules) of the liquid are not necessarily at or near 
the bottom of the potential. Hence the vibrational 
spectrum of a liquid can exhibit imaginary frequencies 
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scales30 and therefore cannot couple very well to this 
high-frequency motion. However, more associated 
solvents may have higher frequency unstable modes 
that can couple more effectively to the reaction 
coordinate in the chemical barrier region. Another 
higher frequency motion is that due to the internal 
vibrations of polyatomic solvents. These will be 
particularly coupled to the solute coordinates when they 
are infrared active.' 

Concluding Remarks 

In this Account we have discussed both the activated 
and the activationless dynamics of bimolecular reactions 
in structureless solvents. The role of the solvent during 
the motion to or from the barrier region, and in 
particular in the process of activating (or deactivating) 
the reactants, was analyzed via an adiabatic separation 
of variables. This not only identifies the nature of 
energy exchange between solvent and solute but also 
emphasizes the participation of the solvent motion in 
the chemical transformation of the solute. 

Two extreme limits were discussed. The low coupling 
limit occurs where the solvent control is kinetic. Here 
the solvent couples to the solute primarily in the 
entrance or exit to the barrier region. This was 
interpreted in terms of the relevant frequencies (or force 
constants): the local frequency along the reaction 
coordinate and the solvent-solute frequency. The large 
repulsive forces at the activation barrier are often 
comparable to chemical force constants and are larger 
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by 1 or 2 orders of magnitude than the solvent-solute 
interaction. In the barrier's region the motion along 
the reaction coordinate is therefore fast whereas the 
solvent is moving slowly and is unable to follow this 
rapid motion. Only at the foothills of the activation 
barrier can the two local frequencies match, and an 
impulsive, nonadiabatic transition activates (deacti- 
vates) the reactants (products). The disparity in the 
magnitude of the force constants results in a separation 
of time scales that can be probed by spectroscopic 
means. For weakly coupled solvents, the caging regime 
is found only a t  such high densities that the solvent 
atoms themselves become caged. Even at these high 
densities the caging phenomenon is less pronounced 
than what one may expect, as the steric and kinematic 
requirements, familiar from the gas phase, must be 
satisfied for the recrossing of the barrier to be successful. 
The dynamics in strongly coupled solvents necessarily 
exhibit more variations reflecting chemical specificities. 
These are due not only to energetic effects but also to 
the dynamics which requires that during the chemical 
change there occurs a concerted motion of both solvent 
and solute. 
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